Data groups form the column headers and row headers in a pivot table. Typically, the distinct values of a variable form a set of headings (i.e. a set of data groups). Consider the following pivot table:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
In this pivot table, there are three sets of data groups:
The data groups form a hierarchy. A data group can have child data groups. In the pivot table above, there are three column data groups at the first level, “Express Passenger”, “Ordinary Passenger” and “Total”. The “Express Passenger” group has four child data groups for the power types “DMU”, “EMU”, “HST” and “Total”. The “Ordinary Passenger” data group has three child groups and the “Total” data group has one child group (a blank group). The second level of the column data groups is thus formed of (4+3+1=) eight data groups.
There are a few different ways to add data groups to a pivot table.
The easiest way to add data groups to a pivot table is to simply generate data groups based on the distinct values that exist for a particular variable (i.e. in a particular column in a data frame). This is the method used in the pivot table above.
By default, when adding additional levels to a pivot table after the first level (i.e. for level 2, 3, etc.), the filter criteria coming from parent data groups is considered. For example, in the pivot table above, there are “Express Passenger” trains with a power type of “HST”, but no “Ordinary Passenger” trains with a power type of “HST”. So while a “HST” data group exists under “Express Passenger”, no “HST” data group exists underneath “Ordinary Passenger”.
Sometimes, a more uniform layout is preferred, i.e. in the above
example, we would like “HST” to be present underneath “Ordinary
Passenger” as well. This can be accomplished by setting the argument
onlyCombinationsThatExist
to FALSE
.
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType", onlyCombinationsThatExist=FALSE)
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
It is also possible to add data values explicitly, by passing a
list of values as the explicitListOfValues
argument. When an explicit list of values is specified, the pivot table
does not sort the values. For example, if we wished to ignore the “HST”
power type completely:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType", fromData=FALSE, explicitListOfValues=list("DMU", "EMU"))
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
In the above example, some of the totals now do not appear to reconcile, e.g. “CrossCountry DMU” (22133) + “CrossCountry EMU” (0) does not equal “CrossCountry Total” (22865). The difference is the “CrossCountry HST” (732) data group that has been omitted. This may or may not be desirable, depending on how the pivot table is introduced, the title that is used, etc.
If it is desirable for the totals to reconcile, then visual totals
can be enabled using the visualTotals
argument:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType", fromData=FALSE,
explicitListOfValues=list("DMU", "EMU"), visualTotals=TRUE)
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
Note that finding total/non-total data groups/cells with the
findRowDataGroups()
, findColumnDataGroups()
and findCells()
functions won’t work when visual totals are
enabled. See the Finding and
Formatting vignette for more details on these functions.
By specifying values explicitly, it is also possible to combine multiple values into one data group. For example, if the primary focus of an analysis is the two train operating companies operating the most trains (“London Midland” and “CrossCountry”), then “Arrival Trains Wales” and “Virgin” can be combined:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC", fromData=FALSE, explicitListOfValues=list(
"London Midland", "CrossCountry", c("Arriva Trains Wales", "Virgin Trains")))
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
Should an alternative caption be preferred for the combined group, it can be specified by setting the name of the list element. Following the example above, they could simply be labelled as “Other”:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC", fromData=FALSE, explicitListOfValues=list(
"London Midland", "CrossCountry", "Other"=c("Arriva Trains Wales", "Virgin Trains")))
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
Adding data groups one-at-a-time for fine-grained control to create a pivot table with an irregular layout is also possible. See the Irregular Layout vignette for more details.
Each data group has three values:
A captionTemplate
that is the template text used to
build the caption. The data type of the captionTemplate
is
character.
A caption
that is the value that is displayed in the
pivot table. The data type of the caption
is
character.
A sortValue
that is used to order the group within
the set of groups. The sortValue
is the same data type as
the variable the data group is based on.
The captionTemplate
is specified via the
caption
argument of addColumnDataGroups()
or
addRowDataGroups()
. It allows a prefix or suffix to be
added to the caption:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory", caption="TC: {value}")
pt$addColumnDataGroups("PowerType", caption="PT: {value}")
pt$addRowDataGroups("TOC", caption="TOC: {value}")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
In all of the examples above, the data groups are text values (i.e. are based on data frame columns of data type character). When data groups are numerical or date/time values, then typically some form of formatting is required. Formatting generates a caption for each data group, i.e. a more readable version of the underlying data group value.
For example, plotting the total number of trains per month for each train operation company:
# derive the date of each train (from the arrival/dep times),
# then the month of each train from the date of each train
library(dplyr)
library(lubridate)
library(pivottabler)
trains <- mutate(bhmtrains,
GbttDate=if_else(is.na(GbttArrival), GbttDeparture, GbttArrival),
GbttMonth=make_date(year=year(GbttDate), month=month(GbttDate), day=1))
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("GbttMonth")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
In the example above, the month headings are not explicitly
formatted. The example below shows how to format these headings using
the dataFormat
argument of
addColumnDataGroups()
:
# derive the date of each train (from the arrival/dep times),
# then the month of each train from the date of each train
library(dplyr)
library(lubridate)
library(pivottabler)
trains <- mutate(bhmtrains,
GbttDate=if_else(is.na(GbttArrival), GbttDeparture, GbttArrival),
GbttMonth=make_date(year=year(GbttDate), month=month(GbttDate), day=1))
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("GbttMonth", dataFormat=list(format="%B %Y"))
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
A number of different approaches to formatting are supported:
dataFormat
is a text value, then pivottabler
invokes base::sprintf()
with the specified format.dataFormat
is a list, then pivottabler invokes
base::format()
, where the elements in the list become
arguments in the function call.
base::format(value, format="%B %Y")
dataFormat
is an R function, then this is
invoked for each value.dataFormat
is not specified, then
base::as.character()
is invoked to provide a default
formatted value.Some formatting behaviour depends on the data type of the value being formatted. For details see the Appendix: Details vignette.
An example of using a custom R function to accomplish the same formatting is:
# derive the date of each train (from the arrival/dep times), then derive
# the month of each train from the date of each train
library(dplyr)
library(lubridate)
library(pivottabler)
trains <- mutate(bhmtrains,
GbttDate=if_else(is.na(GbttArrival), GbttDeparture, GbttArrival),
GbttMonth=make_date(year=year(GbttDate), month=month(GbttDate), day=1))
# define a custom formatting function
formatDate <- function(x) {
base::format(x, format="%B %Y")
}
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("GbttMonth", dataFormat=formatDate)
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
An example of passing additional parameters to the custom formatting
function using the dataFmtFuncArgs
argument:
# derive the date of each train (from the arrival/dep times), then derive
# the month of each train from the date of each train
library(dplyr)
library(lubridate)
library(pivottabler)
trains <- mutate(bhmtrains,
GbttDate=if_else(is.na(GbttArrival), GbttDeparture, GbttArrival),
GbttMonth=make_date(year=year(GbttDate), month=month(GbttDate), day=1))
# define a custom formatting function
formatDate <- function(x, formatCode) {
base::format(x, format=formatCode)
}
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("GbttMonth",
dataFormat=formatDate, dataFmtFuncArgs=list(formatCode="%B %Y"))
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
Note that when passing multiple arguments to the custom formatting
function, the value parameter must always be named x
in the
custom function.
By default, data groups are sorted into ascending order based on the data group value, e.g.:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
In the above example the train operating companies are sorted into ascending order alphabetically (Arriva, CrossCountry, London, Virgin). Similarly for the train category (Express, Ordinary) and power type (DMU, EMU HST). The totals appear in a fixed position, irrespective of the data group sorting.
The data groups can be sorted into descending order using
dataSortOrder
argument, e.g. to reverse the order of the
train operating companies:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC", dataSortOrder="desc")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
The data groups can be sorted into a custom sort order using
dataSortOrder
and customSortOrder
arguments:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC", dataSortOrder="custom",
customSortOrder=c("London Midland", "Arriva Trains Wales",
"Virgin Trains", "CrossCountry"))
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot()
The data groups can also be sorted using the
sortColumnDataGroups
or sortRowDataGroups
methods. Using these methods, data groups can be sorted in five
different ways:
orderBy="value"
,orderBy="caption"
,orderBy="calculation"
,orderBy="customByValue"
and specifying
customOrder
,orderBy="customByCaption"
and specifying
customOrder
.Note that “data group value” above refers to the value in the row/group header. In the example pivot table above and below, the headers are text values, e.g. “Express Passenger”, “DMU”, “London Midland”, etc (so the value and caption are the same). The data group value and caption tend to be different when the data groups are dates or numbers.
To sort by a number in the cells of the pivot table, which is
typically the result of a calculation, use
orderBy="calculation"
.
For example, to sort the train operating companies into descending order by the total number of trains:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$sortRowDataGroups(levelNumber=1, orderBy="calculation", sortOrder="desc")
pt$renderPivot()
The pivot is sorted using the totals for each data group. In the pivot table above, the London Midland train operating company is in first place with 48,279 trains. CrossCountry is in second place with 22,928 trains, etc.
Since the pivot table above only contains one calculation, it was not
necessary to specify the name of the calculation when sorting the row
groups. If a pivot table contains more than one calculation, and there
is a wish to sort by a calculation other than the first calculation that
was defined, then the calculation can be specified by using the
calculationName
argument when calling either
sortColumnDataGroups
or sortRowDataGroups
.
When sorting the headings at the second, third, etc. level, the sort does not break the structure coming from the parent data groups, i.e. a separate sort is performed within each parent group, e.g.
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$sortColumnDataGroups(levelNumber=2, orderBy="calculation", sortOrder="desc")
pt$renderPivot()
In the example above, one sort was carried out for the power type groups under “Express Passenger” (“DMU” in first place with 32,987 trains, “EMU” second with 15,306 trains, etc.) and a separate sort was carried out for the power type groups under “Ordinary Passenger” (“EMU” first with 28,201 trains, “DMU” second with 6,484 trains, etc.).
The sortColumnDataGroups
or
sortRowDataGroups
can also be used to reset the sort order
back to an alphabetic order based on the value of each of the groups,
e.g.
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
# the follow line sorts the data based on the totals
pt$sortColumnDataGroups(levelNumber=2, orderBy="calculation", sortOrder="desc")
# the following line resets the sort order back, i.e. removes the sort applied in the line above
pt$sortColumnDataGroups(levelNumber=2, orderBy="value", sortOrder="asc")
pt$renderPivot()
This can be useful when building a pivot table interactively, to quickly reset the sort order without needing to rebuild the entire pivot table.
To sort data groups into a custom order using
sortColumnDataGroups
or sortRowDataGroups
:
library(pivottabler)
pt <- PivotTable$new()
pt$addData(bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$sortRowDataGroups(levelNumber=1, orderBy="customByValue", sortOrder="asc",
customOrder=c("Arriva Trains Wales", "London Midland",
"CrossCountry", "Virgin Trains"))
pt$renderPivot()
It is possible to make a pivot table appear more like a standard
table by adding headings to the row group columns at the left of the
table. To do this, specify the header
argument in
addRowDataGroups()
and specify
showRowGroupHeaders=TRUE
in renderPivot()
,
getHtml()
, saveHtml()
or
writeToWorksheet()
. (Note this is currently not supported
for Latex output).
library(dplyr)
library(lubridate)
library(pivottabler)
trains <- mutate(bhmtrains,
GbttDate=if_else(is.na(GbttArrival), GbttDeparture, GbttArrival),
GbttMonth=make_date(year=year(GbttDate), month=month(GbttDate), day=1))
trains <- filter(trains, GbttMonth>=make_date(year=2017, month=1, day=1))
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("GbttMonth", dataFormat=list(format="%B %Y"))
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC", header="Train Company")
pt$addRowDataGroups("TrainCategory", header="Train Category")
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$renderPivot(showRowGroupHeaders=TRUE)
This can be taken a step further by switching off totals for the row data groups and using a different table theme which styles the row data groups to match the cells in the body of the pivot table.
# derive the date of each train (from the arrival/dep times),
# then the month of each train from the date of each train
library(dplyr)
library(lubridate)
library(pivottabler)
trains <- mutate(bhmtrains,
GbttDate=if_else(is.na(GbttArrival), GbttDeparture, GbttArrival),
GbttMonth=make_date(year=year(GbttDate), month=month(GbttDate), day=1))
trains <- filter(trains, GbttMonth>=make_date(year=2017, month=1, day=1))
pt <- PivotTable$new()
pt$addData(trains)
pt$addColumnDataGroups("GbttMonth", dataFormat=list(format="%B %Y"))
pt$addColumnDataGroups("PowerType")
pt$addRowDataGroups("TOC", header="Train Company", addTotal=FALSE)
pt$addRowDataGroups("TrainCategory", header="Train Category", addTotal=FALSE)
pt$defineCalculation(calculationName="TotalTrains", summariseExpression="n()")
pt$theme <- getStandardTableTheme(pt)
pt$renderPivot(showRowGroupHeaders=TRUE)